INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS

EXAMEN GUÍA DE TERMODINÁMICA Y MECÁNICA ESTADÍSTICA(LÍNEA DE FÍSICA)

PROBLEMAS

- I .-Un mol de gas ideal ($C_V = 3R/2$), realiza un ciclo reversible que inicia con una compresión isocórica de p_1 hasta p_2 a V_i , después realiza una expansión adiabática tal que $V_f = 2V_i$, y finalmente se cierra el ciclo isobáricamente (hasta V_i). Haga el diagrama P-V del ciclo, calcule la eficiencia del ciclo y comparela con la de una máquina de Carnot operando entre las temperaturas máxima y mínima que ocurren en este ciclo (30 puntos).
- II .-Demostrar que un gas ideal de bosones bidimensional, no experimenta el fenómeno de la condensación de Bose (40 puntos).
- III .-Se encuentra que para un sistema particular, en un proceso a volumen constante, a partir del punto (V_0, P_0) y hacia un punto arbitrario (V_0, P') , el calor transferido es:

$$Q' = A(P' - P_0), (1)$$

con A > 0. Y sus adiabátas son:

$$PV^{\gamma} = cte.$$
 (2)

con $\gamma > 0$. Encuentre la energía interna U(V, P) de un punto arbitrario en el plano P - V, expresada en términos de P_0 , V_0 , A, $U_0(V_0, P_0)$ y γ (30 puntos).

- IV .-Un sistema posee dos niveles de energía $E_1=0,\,E_2=\varepsilon$. Usando la función de partición canónica, encontrar la capacidad calorífica del sistema y sus límites para $T\to 0$ y $T\to \infty$ (40 puntos).
- V .-Se encuentra experimentalmente que la energía libre de Helmholtz para una barra elástica está dada por

$$F = kT \left(\frac{L^2}{2L_0} + \frac{L_0^2}{L} \right) - \gamma T^3 + A$$

donde k, γ y A son constantes. Calcule la ecuación de estado para la tensión $\tau = \tau(L, T)$, la entropía, y pruebe que:

$$\left(\frac{\partial \tau}{\partial T}\right)_L = -\left(\frac{\partial S}{\partial L}\right)_T$$

(30 puntos).

- VI .-Deduzca la termodinámica (ec. fundamental y ecs. de estado) de un gas ideal monoatómico, usando el ensamble canónico y el hamiltoniano del sistema de partículas libres que lo forman. (30 puntos)
- VII .-Deduzca las 2 ecuaciones "TdS" en términos de los coeficientes fenomenológicos α (dilatación térmica), c_p (capacidad calorífica molar a presión constante) y k_T (compresibilidad isotérmica) y las variables termodinámicas volumen, temperatura y numero de moles (40 puntos).